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1 Introduction 

1.1 Aim of the document 

One of the main goals of the SISSDEN platform is to provide situational awareness of the 
cybersecurity threat landscape. This comprises the detection of new threats as they emerge, 
as well as monitoring the evolution of threats once they have been identified. 

!ƴŀƭȅǎƛǎ ƻŦ ǘƘŜ ǊƛŎƘ ŘŀǘŀǎŜǘǎ ŎƻƭƭŜŎǘŜŘ ōȅ ǘƘŜ {L{{59b ǎŜƴǎƻǊǎ ŀƴŘ ǇŀǊǘƴŜǊǎΩ ǎȅǎǘŜƳǎ ƛǎ ƪŜȅ ǘƻ 
obtaining such useful intelligence. Large amount of data means that the analysis must be 
highly automated, therefore multiple specialized analysis modules has been developed in 
the course of the project and are presented in this report. 

This work has been performed as a part of the following tasks: 

¶ T5.1: behavioural analysis of malware collected by the SISSDEN platform (T5.1). 

¶ T5.2: long term monitoring of botnets and other malware (T5.2). 

¶ T5.3: identifying and classifying threats observed by SISSDEN sensors and darknets. 

Additionally, a collaborative analytical platform has been developed in the fourth task (T5.4). 
The platform allows to interactively query and visualize data collected by the SISSDEN 
platform, including the results of the analysis modules described in this report. 

The aim of this document is to present developed analyses modules and insights they 
provide. Examples of analyses results are also presented, to explore the capabilities of 
developed modules and indicate main threats identified by particular analyses. Additionally 
an overview of the analytical platform is also included. As this document is public, some of 
the details are omitted, in order to not jeopardise monitoring methods that are used 
operationally. 



SISSDEN D5.3   H2020-DS-2015-мκƴϲ 700176  

ϭ {L{{59b - www.sissden.eu - 5 - 2019-04-29 

2 Analyses and findings 

This section presents an overview over the new analyses modules developed in T5.1-T5.3. 
Analyses are split into three categories: Reconnaissance, Tracking, and Statistics: 

¶ Section 2.1 Reconnaissance describes analyses that detect new threats, such as new 
malware strains, newly installed C&C infrastructure, or a previously unseen scan 
pattern that should be monitored for further activity. 

¶ Section 2.2 Tracking describes analyses that monitor the behaviour of identified 
threats. This includes tapping C&C communication of botnets or monitoring their 
spreading behaviour observed in darknets. 

¶ Section 2.3 Statistics describes analyses that provide key measurements for a threat 
class or data source, e.g. the number of exploit attempts in a certain interval at a 
honeypot, or the number of scan events seen for a certain scan pattern in darknets. 

Most of the analysis modules are integrated in the analytical portal, some are hosted by 
partners, for performance or operational reasons. 

2.1 Reconnaissance 

2.1.1 Malware Clustering 

Name Malware Clustering 

Lead by USAAR 

Data Source(s) USAAR Sandboxes, malware samples 

Analysis Result(s) List of malware samples with similar characteristics 

Update Frequency On Demand 

State Fully Integrated 

 

Description 

The vast amount of new malware samples observed on a daily basis makes automated 
classification indispensable: Which samples do constitute new, unknown threats, and which 
are just variants of malware families already known? 

To answer this question, our malware clustering analysis considers a range of runtime 
characteristics to find samples that share these characteristics. 

In particular, the following network communication features are used for clustering: 

¶ IP addresses contacted by the malware 

¶ UDP and TCP protocols used by the malware (identified via source and destination 
port) 

¶ domain names resolved by the malware 

¶ full payloads sent and received by the malware 

¶ ngrams over the payloads sent and received by the malware 
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In a first step, every feature is reduced to a 4096-bit Bloom filter, resulting in five Bloom 
filters per malware execution. Over these Bloom filters, the distance between two malware 
executions can then be defined as the sum of their per-feature Jaccard distance: Executions, 
that have identical features will also have identical Bloom filters and thereby a Jaccard 
distance of zero. Executions that vary only a little in a feature will have Bloom filters that 
differ only in a few positions and therefore have small Jaccard distance. 

Next to the dissimilarity of two executions, the malware clustering also computes a 
confidence value to model the significance of the clustering: While the Jaccard distance for 
two malware samples that contact the same 1 000 hosts and send the exact same 1 000 
payloads, and two malware samples that both only contact a single host with a single 
payload is zero in both cases, the expressiveness of this finding is much higher in the first 
case. Therefore, a confidence value is computed over the maximum number of entries in the 
Bloom filter of both executions ranging from 0 (no entries) to 1 (4 096 entries). 

In the clustering phase, the k-nearest neighbour algorithm is employed to find the ten 
closest malware executions in terms of the distance defined above, which are returned 
together with the sha256 hashes of their respective malware samples. An example is shown 
in Fig. 2.1. 

 

Figure 2.1: Confidence and Similarity of clustering of chosen samples 



SISSDEN D5.3   H2020-DS-2015-мκƴϲ 700176  

ϭ {L{{59b - www.sissden.eu - 7 - 2019-04-29 

Looking at the distribution of similarity scores over all samples (Fig. 2.2) shows that the vast 
majority of malware samples has at least one other sample with a similarity score of 80 or 
higher. This is expected as honeypot systems will likely capture many samples from wide-
spread malware campaigns rather than being the victim of targeted attacks. 

 

Figure 2.2: Distribution of similarity score over all analyzed samples 
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2.1.2 Extraction of C&C Servers 

Name Extraction of C&C Information 

Lead by USAAR 

Data Source(s) USAAR Sandboxes, malware samples 

Analysis Result(s) C&C IP addresses 

Update Frequency Daily + On Demand 

State Fully Integrated 

 

Description 

Many classes of malware do not work standalone, but exchange information with a server to 
accomplish their mischievous goal. For ŜȄŀƳǇƭŜΣ ǊŀƴǎƻƳǿŀǊŜ ŜƴŎǊȅǇǘƛƴƎ ŀƭƭ ǘƘŜ ǳǎŜǊΩǎ ŦƛƭŜǎ 
might contact a server to transmit information about the key, a malware that aims at 
building a botnet will usually register at a server upon infection and await further 
commands. These servers are commonly referred to as Command & Control servers (C&C or 
C2 for short). 

Knowledge about C&C infrastructure can be used in various ways: Knowing an active C&C 
ǎŜǊǾŜǊ ƻŦ ŀ ōƻǘƴŜǘ ŀƭƭƻǿǎ ǘƻ ǘŀǇ ƛƴǘƻ ǘƘŜ ŎƻƳƳǳƴƛŎŀǘƛƻƴ ŀƴŘ ǊŜŎƻǊŘ ǘƘŜ ōƻǘƴŜǘΩǎ ŀŎǘƛǾƛǘȅΦ 
Furthermore, analysing how the infrastructure for a certain strain of malware behaves 
allows to gain potential insights into new campaigns. Finally, the extracted information can 
also be directly used to assist efforts towards disrupting active malware campaigns. 

Malware can usually perform a variety of different network activity, including scanning other 
hosts for potential vulnerabilities, downloading files, resolving domain names using DNS, and 
communicating with its C&C infrastructure. This makes it necessary to identify the C&C 
communication among other traffic. Luckily, oftentimes the C&C channel of a given malware 
family uses a proprietary communication protocol, custom designed by the malware author. 

While this means that manual work is necessary to fully understand such a protocol, it also 
means that these protocols often have very specific characteristics that can be used to 
quickly identify C&C communication in a large amount of network traffic. This is done by 
defining a malware-family specific C&C-communication fingerprint. 

As a first step, an analyst that analyses a new strain of malware manually extracts 
information about the C&C communication and creates a corresponding fingerprint. This 
fingerprint is then added to a database of known fingerprints. At the time of writing, 
fingerprints exist for the following malware families: 

Bashlite, Carbanak, Carberp, Cerber, Citadel, Cryptowall, DirtJumper, Dorkbot, Dridex, 
FakeRean, Fareit, Foreign, Fynloski, Ghost, Hajime, Installcor, Installrex, ISRStealer, Kelihos, 
Kronos, Kuluoz, Lethic, LinuxIRC, Locky, LuminosityLink, Mirai, Napolar, Nitol, NJRat, 
Nymaim, Palevo, PoisonIvy, Pramro, Pushdo, Qakbot, Ramnit, Recslurp, Reveton, RM5f, 
SalityNonP2P, SalityP2P, Shinspy, Shiotop, SpyEye, Tinba, Tofsee, TVSpy, Vawtrak, Virut, 
Winwebsec, Yoddos, ZeroAccess, and ZeusP2P. 
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The C&C Extraction module works on the network traces recorded by the USAAR sandbox. 
These network traces are first reassembled into individual flows, where every flow describes 
the bytes transferred between a specific port at the remote host and a specific port at the 
sandbox via either UDP or TCP. Data bytes in these flows are then compared against the 
known fingerprints from the database. If a positive match is found the corresponding flow is 
tagged and the remote host and port are reported as a C&C server. 

For example, Fig. 2.3 shows a screenshot of a malware sample belonging to the Lethic_A 
family. The system successfully identified the connection to 91.232.105.121 on port 5500 as 
C&C communication. 

  

Figure 2.3: The system identifying Lethic_A 

Over the entire project period, 259 855 C&C servers were identified, the majority of them 
located in the US, followed by Germany, Russia, the Netherlands, and Ireland (Fig. 2.4) 

  

Figure 2.4: Breakdown of countries hosting identified C&C servers 
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2.1.3 Mobile Malware Analysis 

Name Mobile Malware Analysis 

Lead by USAAR 

Data Source(s) Malware collected by SISSDEN 

Analysis Result(s) C&C IP addresses 

Update Frequency On Demand 

State Fully Integrated 

 

Description 

Past malware did primarily target Windows systems due to Windows' predominance on the 
desktop market, which meant a huge number of potential malware hosts, and Linux systems 
which are commonly used in server systems. Although the threat of Windows malware 
seems never-ending and Linux based malware even saw a renaissance due to low cost 
Internet-of-Things devices, a third platform has become a new target for malicious software: 
Mobile devices. 

This analysis module extends the sandboxing capabilities of SISSDEN with support for 
Android, the primary operating system on mobile devices today. Towards this, the Android 
emulator was integrated into the USAAR sandbox system. 

Whenever an Android sample is submitted to the sandbox, a fresh, emulated Android device 
is restored from a snapshot. Restoring devices from a previously saved snapshot allows to 
skip the lengthy boot sequence of Android, which greatly increases sandbox performance. 
The emulated Android device is connected to a virtual bridge interface, which allows the 
sandbox system to record all network traffic performed by the android application. Next, the 
sample is installed on the device using the Android Debug Bridge (adb), and its manifest file 
is scanned for registered activities. Once on-device installation finished, intents are sent via 
adb to the device in order to launch the application. 

Great care has been taken to ensure that the implementation of the mobile malware 
analysis component exposes the same interface as the existing malware sandboxing 
components for Windows and Linux malware. This ensured that further analyses modules, 
such as the C&C extraction or the clustering (as presented above) can also be executed on 
results from the mobile malware analysis. 
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2.1.4 Darknet Botnet Analysis 

Name Darknet Botnet Analysis 

Lead by CYBE 

Data Source(s) CYBE Darknet, Third-party Darknet 

Analysis Result(s) Bot IP, associated metadata 

Update Frequency on demand 

State Prototype 

 

Description 

The CYBE distributed darknet collector records scanning and backscatter events in three 
different locations in Europe. By having multiple presences and direct peering agreements, 
ǘƘŜ ŘƛǎǘǊƛōǳǘŜŘ ŘŀǊƪƴŜǘ Ŏŀƴ ŘŜǘŜǊƳƛƴŜ ǘƘŜ Ƴƻǎǘ ǇǊƻōŀōƭŜ ƭƻŎŀǘƛƻƴ ƻŦ άǎǇƻƻŦŜŘέ ǘǊŀŦŦƛŎΦ ¢ƘŜ 
proof of concept was deployed in Sweden and the Netherlands with direct peering 
agreements in Amsterdam AMSIX and NLIX. 

An API was developed to interface with the Darknet storage and each of the packets 
recorded is indexed (20+ fields in April 2019). The API allows to interface directly with the 
Darknet data and obtain aggregated results from the following attack vectors: exploitation 
(CLDAP, SNMP, SMB, NTP, SSDP), botnets (Mirai, Satori), recent DDOS Amps vectors 
(memcache), VoIP (SIP scans). 

The Darknet analysis modules also provide means to identify victims of DDOS attacks by 
backscatter traffic analysis. The module has successfully identified the type of attacks against 
the victims and type of mitigation hardware deployed to protect the victims. Full packet 
search on UDP payloads has been used to identify C&C from Netis router exploiters. 

The analysis platform for the collectors is running in a commodity hardware running 
Elasticsearch in a RAID-ed 10TB storage and slow I/O that limits the performance of the API. 
Long term analysis requires a better hardware setup. 

The prototype shows that distributed darknet recording with full packet processing provides 
extra intelligence to track spoofed traffic as TTL values can conclusively determine the 
nature of the traffic. 
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2.1.5 CVE Mapper 

Name CVE Mapper 

Lead by T-Labs 

Data Source(s) CVE data available in external sources and honeypot events 

Analysis Result(s) Mapping of honeypot events to CVE numbers 

Update Frequency periodic 

State Implemented 

 

Description 

CVE mapping enables us to assign a standardized description for known vulnerabilities. By 
querying the API periodically, the honeypot events are collected. The CVE data available in 
external sources (if any) is another input to this analysis. The correlation between Suricata 
events/alerts and honeypot events is computed. By conducting this analysis, we can 
evaluate the coverage of tools and services provided by the project. Moreover, it facilitates 
the data exchange between this project and other relevant projects, services, and products. 
At the same time, it saves the Suricata events to a local file, in case we want to use the 
information in further investigation (for instance, search for source IP address in the other 
Honeypots for potential matching). 

  



SISSDEN D5.3   H2020-DS-2015-мκƴϲ 700176  

ϭ {L{{59b - www.sissden.eu - 13 - 2019-04-29 

2.1.6 SSH Session Analyzer 

Name SSH Session Analyzer 

Lead by T-Labs 

Data Source(s) Cowrie honeypot events 

Analysis Result(s) Checksums for SSH logs, family detection 

Update Frequency periodic 

State Prototype 

 

Description 

The SSH analyser calculates different forms of checksums on terminal input. One checksums 
is a very exact one, the other checksum is rather fuzzy to enable the detection of families. In 
particular the fuzzy checksum first tokenizes that input data stream, removes all non-
relevant parts and then performs a classical checksum. The checksums created can be made 
available to the public, also the calculation code will be made public. The results can be used 
to see which attack patterns belong to which family. Consequently, also infected hosts can 
be matched to malware groups. The checksumming routines are implemented as python 
code without any third party dependencies. 

Events are clustered based on the information derived from the logs captured by Honeypots 
such as Glastopf and Cowrie. Trace of the commands and credentials, which attackers used 
in order to attack the system, are applied in to machine learning algorithm for clustering 
based on an algorithm such as K-means and DBSCAN (Density-Based Spatial Clustering of 
Applications with Noise). 

The aim of clustering the attacks of these honeypots is finding the similarities between 
attack behaviours of different attackers. Attacks such as polymorphic worms are able to 
change their behaviour multiple times to be hidden and to bypass any intrusion detection 
system. They change the payload of their messages multiple times such as changing the 
order of the commands or used credentials which they try, number of attempts and the time 
of the attacks. Machine learning is a powerful tool for categorizing this type of attacks to 
detect complexity in the patterns. 

One sophisticated attack could be considered many times as a new attack in the normal 
situation, but if there were a possible similarity between them, then they can be clustered 
under one category and the model could be extracted and be used for detecting any future 
attacks. 

This method is applied to the selected fields of SSH logs from Cowrie Honeypot. The fields 
ŀǊŜ ά¦ƴƪƴƻǿƴ /ƻƳƳŀƴŘǎέ ŀƴŘ ά/ǊŜŘŜƴǘƛŀƭǎέΦ {{I ƘƻƴŜȅǇƻǘ ƭogs contain credentials which 
attackers attempts to log into SSH Server. These credentials have been fed into machine 
learning algorithms such as K-means, DBSCAN (Density-Based Spatial Clustering of 
Applications with Noise) for further analysis. 

The clustering methods are used to categorize the pattern of these SSH login attempts. For 
instance, one individual attack is able to change the number of tries, the order and the time 
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interval between individual trials. These patterns are detected by the K-means and DBSCAN 
algorithms and are categorized accordingly. Other information of the events that fall into 
these categories - such as source IP addresses - could be monitored and considered as 
suspicious. Without categorizing, these changes of behavior of one particular attack could be 
confusing in terms of detection of a special malware or malicious activity. This clustering 
provide security experts with a comprehensive information about a specific type of attacks. 
The cluster detect all variant of same attack instead of reporting many different aspects of it 
as different attacks. 

In Figure 2.5 and Figure 2.6 the clusters and the number of events falling into each category 
are shown. The number of clusters in advanced method such as DBSCAN are defined by the 
algorithm itself (Fig. 2.5). The distance between possible categories affects the number of 
clusters.  

  

Figure 2.5: Categories attacks based on similarities in their behaviours. (DBSCAN Clustering 
Algorithm) 

The K-means algorithm (Fig. 2.6) has the disadvantage that the number of clusters has to be 
predefined, which may not describe the possible cluster of attacks adequately. 
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Figure 2.6: Clustering based on K-means algorithm 
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2.1.7 Darknet Reputational Analysis 

Name Darknet Reputational Analysis 

Lead by CYBE 

Data Source(s) CYBE Darknet, Third-party Darknet 

Analysis Result(s) Bot IP, associated metadata 

Update Frequency on demand 

State Prototype 

 

Description     

This task uses experimental reputational analysis techniques to detect bots. It combines 
analysis of the traffic with reputational information about the source IP/subnet/ASN. This 
can then be compared in relation to other requests detected historically by the distributed 
darknet. 

Primarily two modes of comparison have been used during this task: 

1. Top actors correlated with honeypot IPs. Suspicious traffic received by the CYBE 
darknet is aggregated on a daily basis and inserted into 3 Elasticsearch indexes (see 
ά5ŀǊƪƴŜǘ 5ŀǘŀ {ǘŀǘƛǎǘƛŎǎέΣ ǎŜŎǘƛƻƴ нΦоΦтύΦ 5ŀǘŀ ƻƴ ǘƘŜ ǘƻǇ ŀŎǘƻǊǎ ōȅ LtκǎǳōƴŜǘκ!{b ƛǎ 
retrieved via the CYBE darknet API and correlated with IPs from honeypots. This gives 
additional insight into the source of attacks on honeypots, especially in cases where 
the IP is spoofed and can be. 

2. Bots correlated with top actors. Data on the top actors retrieved via the CYBE 
darknet API is also correlated with identified attacks from the CYBE darknet (see 
ά5ŀǊƪƴŜǘ .ƻǘƴŜǘ !ƴŀƭȅǎƛǎέΣ ǎŜŎǘƛƻƴ нΦмΦпύΦ ¢Ƙƛǎ ƎƛǾŜǎ ŀŘŘƛǘƛƻƴŀƭ ƛƴǎƛƎƘǘ ƛƴǘƻ ǘƘŜ ǎŎŀƭŜ 
of attacks launched from particular IPs. 
CƻǊ ŜȄŀƳǇƭŜΣ ƛƴ ǘƘŜ ά5ŀǊƪƴŜǘ .ƻǘƴŜǘ !ƴŀƭȅǎƛǎέΣ ƻƴƭȅ ŀ ǎƳŀƭƭ ǎǳōƴŜǘ ƻŦ ŘŀǊƪƴŜǘ ǘǊŀŦŦƛŎ 
can be attributed to botnets and other specific attack vectors. However, once a single 
attack vector has been identified, the likelihood is that other traffic from this same IP 
aimed at the darknet is also malicious in nature, even if the specific attack vector is 
unidentified. This provides interesting data which is analysed and used to improve 
the detection of other attack vectors and/or emerging threats. 
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2.2 Tracking 

2.2.1 Botnet Command Tracking 

Name Botnet Command Tracking 

Lead by NASK 

Data Source(s) NASK malware analysis system 

Analysis Result(s) Dynamic malware configuration and control information sent in it, e.g. 
C&C addresses, web injects, spam templates, distribution server 
addresses 

Update Frequency live 

State Fully deployed and integrated 

 

Description 

Malware tracking system collects dynamic malware configuration. The main part is a 
dynamic malware configuration extraction framework called Mtracker. It supports a number 
of malware-specific modules to contact C&C servers or peer bots to download the most 
recent configuration. The framework provides task scheduling, control of workers' 
operations, network access via multiple proxy servers and fetches new C&C connection 
parameters from the static malware configuration extraction system (described in section 
2.2.2). Fig. 2.7 ǇǊŜǎŜƴǘǎ ǎȅǎǘŜƳΩǎ ŘŀǎƘōƻŀǊŘ ŀƴŘ CƛƎΦ нΦ8 an overview of the system 
functionality. 

   

Figure 2.7: Mtracker dashboard 
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Figure 2.8: Overview of the system functionality 

Mtracker framework serves as an execution and control environment for workers, which are 
emulating bots. Architecture overview (including cooperation with the Ripper framework 
presented in section 2.2.2) is presented in Fig. 2.9. Static configuration, which contains 
information required to connect to a C&C server, is extracted from malware samples by the 
Ripper module and stored in a configuration database. Mtracker downloads static 
configuration as an input for the worker, as it is required to connect to the botnet 
infrastructure. The framework uses a set of proxy servers to emulate different geographic 
locations, thus providing the ability to track campaigns targeting different countries, but also 
counteract to IP address blacklisting by botnet operators. Additionally, usage of a passive 
DNS system helps to connect to C&C servers, which domains were seized by authorities, 
however still operating on the original IP address. 

   

Figure 2.9: Mtracker architecture overview 
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Bot modules are small programs or scripts mimicking real bots. They are developed using 
knowledge from reverse engineering of particular malware families. Such scripts do not have 
full functionality of original malware bots, they only emulate functions needed for collection 
of dynamic configuration. They can contact real C&C servers in order to obtain dynamic 
configuration or, in case of P2P botnets, connect to other bots. As some botnets introduced 
modularity and traffic obfuscation, bot modules also handle such scenarios, in order to 
decode complete payload distributed to bots. 

Mtracker is integrated with the static malware configuration extraction system to track new 
malware binaries that successfully passed the static analysis phase. Additionally, any 
executables (malware modules, plugins, updates) obtained by Mtracker are uploaded back 
into the static malware configuration extraction system. 

Depending on the malware family, Mtracker can download various information contained in 
dynamic configuration, for example webinjects used by banker trojans, spam templates used 
by spambots, URI to malware samples in case of downloaders, but also addresses of the 
botnet infrastructure. An example of webinjects of ISFB banker is presented in Fig. 2.10. 

   

Figure 2.10: An example of a webinject of ISFB (banker trojan) 

Mtracker framework outputs extracted information as semi-structured plaintext data (web 
injects, spam templates, dynamic configuration) or binaries (malware modules, plugins, 
updates). 

On M36 of the project the system extracted about 3 000 dynamic configurations using 
14 500 bot instances and is able to track 28 malware families or their modules (for malware 
that has plugin-based architecture), as presented in Tab. 1. 
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Table 1: Malware families and modules trackable by Mtracker 

Number Family name Number Family name 

1 Andromeda 15 Nymaim 

2 Chthonic 16 Ostap 

3 Danabot 17 Panda 

4 Danaloader 18 Pony 

5 Dridex 19 Pushdo 

6 Emotet 20 Quantloader 

7 Emotet spam 21 Ramnit 

8 Globeimposter 22 Smokeloader 

9 Gootkit 23 Tinba 

10 Hancitor 24 Tinynuke 

11 ISFB 25 Tofsee 

12 Kronos 26 Trickbot 

13 Locky 27 VMZeus 

14 Necurs 28 Zloader 

 

Mtracker system has many advantages over traditional sandboxes: 

¶ it is lightweight: hardware requirements are not high even with 300 trackers, 

¶ no malicious traffic is sent by the emulated bots, 

¶ in most of the cases, the system downloads the commands without delay. 

Nevertheless the system requires significant amount of time for the initial analysis of new 
malware families and their communication protocols. Afterward, maintaining of the modules 
is also time consuming as malware families change over time, which can impact the tracking 
operations. 

5ȅƴŀƳƛŎ ŎƻƴŦƛƎǳǊŀǘƛƻƴ ŜȄǘǊŀŎǘŜŘ ōȅ ŀ ƳƻŘǳƭŜ ƛǎ ǎŜƴǘ ǘƻ ǘƘŜ ŘŜŘƛŎŀǘŜŘ {L{{59bΩǎ aL{t 
instance and from there can be browsed and shared. Multiple dynamic configurations are 
grouped in events, which represent a single tracker (bot emulator) with its associated static 
configuration (configuration embedded in a malware sample containing C&C connection 
details, more information in section 2.2.2). Fig. 2.11 presents automatically imported tracker 
information (recent Trickbot, Danabot and ISFB instances): 
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Figure 2.11: Dynamic configuration extracted by Mtracker system available in the MISP instance 

Information provided by Mtracker can be successfully used to track botnet commands and 
infrastructure. It is a valuable source of cyber threat intelligence, because the data is 
obtained directly from botnet infrastructure, without any delays. Thus providing operational 
and actionable information of high quality and reliability. 
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2.2.2 Extraction of static malware configuration 

Name Extraction of static malware configuration 

Lead by NASK 

Data Source(s) Malware collected by SISSDEN, NASK's internal sources 

Analysis Result(s) static malware configuration (including C&C information and 
cryptographic keys) 

Update Frequency live 

State Fully deployed and integrated 

 

Description                       

Malware static configuration extraction subsystem is used to extract configuration data (C&C 
addresses, communication keys etc.) from analyzed malware samples. The subsystem 
schedules execution of malware samples in a sandbox environment, performs memory 
dumping, static binary analysis and stores results in a database. It is also integrated with the 
Mtracker framework (section 2.2.1), as the Mtracker uses information provided by this 
subsystem as input data.  

Major part of the subsystem is the Ripper framework, which is equipped with malware-
specific analysis modules, developed after successful reverse engineering a particular 
malware family. These modules extract static configuration from memory dumps and binary 
files. Please note, that the framework itself is developed and operated outside of the 
SISSDEN project, however the results are shared within the project and multiple modules 
were developed as a part of the project. 

Configuration extraction works as follows. Analyzed malware sample is executed in NASYΩǎ 
sandbox environment to obtain memory dump of malware process. The main goal of this 
step is to unpack malware or let it download and save (drop) the final malicious executable 
on the machine. Then the Ripper framework performs analysis of the obtained files and 
dumped memory in order to extract static malware configuration. 

The current version of the subsystem supports extraction of static configuration of about 60 
malware families. Content of a static configuration varies between malware families, 
however it often includes C&C servers' domains, DGA seeds, cryptographic keys for 
communication with the C&C, version information. Sample configuration of a Nymaim 
malware produced by the Ripper system is presented in Fig. 2.12: 
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Figure 2.12: An example of extracted static configuration of Nymaim banker 

¢ƘŜ Řŀǘŀ ǇǊƻŘǳŎŜŘ ōȅ ƳŀƭǿŀǊŜ ǎǘŀǘƛŎ ŎƻƴŦƛƎǳǊŀǘƛƻƴ ŜȄǘǊŀŎǘƻǊ ǎǳōǎȅǎǘŜƳ ƛǎ ŦŜŘ ƛƴǘƻ {L{{59bΩǎ 
MISP instance as a structured JSON attachment to an event representing a single tracker. 
This object also holds information about extracted malware dynamic configuration and is 
further explored in section 2.2.1. The idea behind such grouping is that Mtracker can use 
particular static configuration to extract many dynamic configurations, thus it is one to many 
relation. An example of static malware configuration is presented in Fig. 2.13. 

     

Figure 2.13: Malware static configuration available in the MISP instance 

Top 10 malware families by number of static configurations provided to Mtracker system are 
presented in Tab. 2. 

Table 2: Top 10 malware families by number of static configurations provided to Mtracker system 

Malware family name Number of static configurations 
ISFB 558 

Trickbot 330 
Smokeloader 210 

Nymaim 184 
Emotet 168 
Necurs 94 
Panda 89 

Danabot 79 
Ramnit 65 

Hancitor 60 
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2.2.3 PGA-based Botnet fingerprinting 

Name PGA-based Botnet fingerprinting 

Lead by NASK 

Data Source(s) Darknet/honeypot traffic, sandboxes 

Analysis Result(s) Botnets/malware packet generation signatures 

Update Frequency 1/5 minutes 

State Fully integrated 

 

Description 

PGA (Packet Generation Algorithm) module leverages knowledge of malware networking 
stack implementation. It inspects traffic originating from botnets or other malicious software 
in order to link them to specific network signatures.  

Malware, botnets or potentially malicious tools (like scanners) often utilize different packet 
generation algorithms, in order to simplify packet generation procedure or make it more 
performant. These procedures are usually based on some simple operations, for example: 

¶ byte swapping, 

¶ value increment, 

¶ value hardcoding. 

These signatures can be usually spotted in the scanning or DoS traffic. Figure 2.14 presents 
an example of a PGA signature in DNS traffic (scanning) observed in the NASK darknet.  

     

Figure 2.14: Example of PGA signatures in DNS traffic observed in the NASK darknet 
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It can be easily spotted that three particular fields are connected with each other: Source IP 
address, IP ID and DNS ID. All of 20 presented network packets have following signatures in 
IP and DNS protocols headers: 

¶ IP_ID = DNS_ID 

¶ IP_ID[1] + 1 = IP_SRC[4] 

¶ DNS_ID[1] + 1 = IP_SRC[4] 

¶ IP_ID[4] = IP_SRC[3] 

¶ DNS_ID[4] = IP_SRC[3] 

PGA-based botnet fingerprinting operates mainly on the darknet traffic. A custom system 
was developed from scratch to analyse protocol headers in network packets and identify 
relations between particular bytes in those headers. Consequently, it allows to apply such 
rules for the analysis of malicious traffic and, in some cases, even perform attribution of 
attacks, for example: which botnet is responsible for scanning or exploitation or which group 
is responsible for a particular Denial of Service attack.  

Figure 2.15 presents an example of PGA signatures matched during DoS attacks targeting 
one of Google IP addresses. These signatures were observed in backscatter from a SYN flood 
attack, thus were detected in TCP SYN-ACK packets. 

      

Figure 2.15: Signatures in SYN-ACK packets originating from a SYN flood DoS attack 

As these signatures were visible in server responses, they can be easily transformed to 
signatures that could have been observed in original SYN packets used for flooding: 

¶ SYN-!/YΥ 5thw¢ Ґ !/YώмΥнϐ Ҧ {¸bΥ {thw¢ Ґ {9vώмΥнϐ  

¶ SYN-!/YΥ !/YώоΥпϐ Ґ лȄлллл Ҧ {¸bΥ {9vώоΥпϐ Ґ лȄCCCC 

¶ SYN-!/YΥ 5thw¢ Ґ Ltψ5{¢ώоΥпϐ Ҧ {¸bΥ {thw¢ Ґ Ltψ{w/ώоΥпϐ 

Knowing that this attack was performed with three above mentioned signatures, it is 
possible to link this particular attack with others using the same technique. 
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To sum up, PGA module allows to create new signatures based on header-level 
characteristics of network attacks and facilities attribution actions (detection of tools or 
malware). 
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2.2.4 SMTP-based Botnet fingerprinting 

Name SMTP-based Botnet fingerprinting 

Lead by NASK 

Data Source(s) NASK spamtraps, sandboxes 

Analysis Result(s) Botnet SMTP dialects, IP to Botnet mapping 

Update Frequency live 

State Fully integrated 

 

Description 

The main goal of this analysis is to monitor spamming activities of specific botnet families 
and identification of infected machines by analysis low-level properties of SMTP 
conversations, i.e. SMTP dialects. This approach allows to observe anomalies in SMTP 
implementations and link them to specific malware families. This in turn enables attribution 
of infections and spam campaigns to specific botnets. 

SMTP-based Botnet fingerprinting module was developed from scratch and analyses 
protocol implementation details of an SMTP client. The idea is simple: collect data 
concerning SMTP implementation of common tools like Mozilla Thunderbird or Microsoft 
Outlook and compare it with the SMTP implementation in the monitored TCP connections 
(during email transfer). Moreover, some of the Internet Message Format (IMF) headers can 
be also included during the analysis. For instance, User-Agent or X-Mailer headers can be 
used to detect attempt of user agent spoofing (dialect does not match the specified mailing 
client). 

Fig. 2.16 presents an example of a dialect analysis process. Following steps of analysis can be 
pointed out: 

¶ Incoming SMTP dialect matches the Thunderbird SMTP implementation. 

¶ Normally, this dialect would be classified as legitimate. However, X-Mailer header 
ƛƴŎƭǳŘŜŘ ƛƴ ŜƳŀƛƭ ƳŜǎǎŀƎŜ ƛǎ ǎǇŜŎƛŦƛŜŘ ŀǎ άaƛŎǊƻǎƻŦǘ hǳǘƭƻƻƪ мпΦлέΦ 

¶ Incoming SMTP dialect is compared with Microsoft Outlook dialect. 

¶ As those two dialects does not match, incoming SMTP dialect is marked as malicious 
(implementation of SMTP does not match the specified email client). 
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Figure 2.16: Example of dialects analysis 

As SMTP-based botnet fingerprinting operates also on sandbox traffic, it is possible to track 
behaviors and SMTP implementations of spamming botnets. An example of such analysis is 
investigation of a malicious eFax spamming campaign which included MS Office documents 
(that were used to install a malware dropper), where the Sendsafe botnet was responsible 
(Fig. 2.17).  

      

Figure 2.17: eFax malicious spam campaign, Sendsafe botnet 

Some facts concerning this spam campaign: 

¶ Messages were sent by the Sendsafe botnet. 




















































































